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A complete and exact kinetic analysis of the phenomenon of dynamic kinetic resolution is presented. This
analysis is applicable to reactions of stable stereoisomeric substrates whose ratios can be controlled and is
valid for any set of kinetic conditions within the constraint of first-order and pseudo-first-order processes.
Two new linear relationships are found for the dependence of the initial product ratio on the initial substrate
ratio and for the dependence of the final product excess on the initial substrate excess. These relationships
yield the minimum number of rate constant ratios needed to characterize the energetics of a chemical system
exhibiting dynamic kinetic resolution completely. A distinct experimental advantage of this method is that it
is based entirely on product studies. A simple graphical representation of the second linear relationship depicts
visually the limiting Curtin-Hammett and anti-Curtin-Hammett conditions. From these conditions, a new
parameter is defined that characterizes the efficiency of dynamic kinetic resolution and Curtin-Hammett
efficiency. Simulations based on enantiomeric substrates illustrate how reactions may be optimized using
this graphical treatment. An extension of this analysis to related kinetic schemes of varying degrees of
complexity shows that the above linear relationships are universal. Results from these treatments are compared
with Noyori’s quantitative work on the stereoselective hydrogenation ofâ-ketoesters. Implications of this
new analysis are also discussed in light of previous work done on the applicability of the Winstein-Holness
and Curtin-Hammett approximations to reactions of substrates that are interconverting conformers. For these
cases, an alternate definition of Curtin-Hammett efficiency is proposed that is based on the experimental
determination of the initial and final product ratios and the equilibrium constant for substrate interconversion.
This unified analysis can be readily applied to a wide variety of synthetic and mechanistic problems in organic
chemistry where dynamic kinetic resolution is applicable.

Introduction and Background

The resolution of chiral substrates and products is of
fundamental importance in the stereoselective synthesis of
optically pure materials, particularly pharmaceuticals. The
connection between the optical purity and function of a drug in
biological systems was made most dramatically by the thali-
domide tragedy in the early 1960s.1 Kinetic,2 dynamic kinetic,3

and more recently dynamic thermodynamic4 resolutions have
all been used as strategies to effect the syntheses of optically
pure molecules. Another chemical phenomenon of fundamental
interest is the synthesis of different products from a common
substrate that exists in different conformations, where each
product arises from a specific conformer. The key kinetic model,
shown in Scheme 1, describing both of these situations is the
one on which the Curtin-Hammett principle was postulated
nearly 50 years ago.5a Substrates X and Y may be either dif-
ferent conformers of a single substance or a pair of racemizable
enantiomers or diasereomers. Though the original paper by
Curtin contains no mathematical expressions relating product
ratios to rate constants, several workers have made attempts to
quantify this principle since 1954.

Most notably, Zefirov6 and Seeman and Farone7 have
provided analytical solutions to Scheme 1 under first-order and
pseudo-first-order conditions. Zefirov derived an expression for
the final product ratio when the substrates are initially at
equilibrium. Such a solution is applicable to the case of
substrates that are interconverting conformers. Seeman and

Farone presented an exact solution for the concentration-time
dependencies of all four species and discussed the range of
validity of the Winstein-Holness and Curtin-Hammett ap-
proximations on the basis of this solution. They were able to
conclude that both approximations were valid so long ask1 and
k2 were both at least an order of magnitude larger thank3 and
k4. This finding is consistent with the majority of documented
reactions obeying Scheme 1 involving the slow decomposition
of fast interconverting substrates. The analytical solution to
Scheme 1 is a special case of the more complicated one given
in two reports8 preceding those of Zefirov and Seeman involving
all possible reversible reactions between four chemical species.

The central difficulty with these exact analytical treatments,
however, is that they have not been widely utilized by synthetic
organic chemists in their efforts to optimize syntheses of
important stereochemical compounds or by mechanistic chemists
in the determination of relative energy barriers for chemical
systems obeying Scheme 1. Even when exact solutions become* E-mail: jandraos@yorku.ca.
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available, Winstein-Holness and Curtin-Hammett conditions
are instead invoked to justify experimental results since they
naturally lead to simpler accessible expressions. The shortcom-
ings of these approximations in obtaining quantitative data have
been well documented. It is not surprising then that it has been
challenging to quantify relative energy barriers in Curtin-
Hammett-type schemes experimentally, particularly when they
are applied to synthetic problems involving dynamic kinetic
resolution. This situation has changed little since Seeman’s
extensive historical review7b of Curtin-Hammett /Winstein-
Holness kinetics in which Zefirov’s early comments to break
the impasse are noted. Therefore, the reinvestigation of the
analytical treatment of the fundamental Curtin-Hammett
scheme and its extended variants is warranted so as to bring
about a workable marriage between theory and practice. In
particular, the main goal here is to obtain useful parameters
from mathematical treatments that can be readily accessed from
experimental data.

The early conformational studies by Barton, Cram, Winstein,
and others centered on the problem of correlating the populations
of products with the populations of their precursor substrates.
The experimental paradigm followed for characterizing the
energetics of such chemical systems centered on first obtaining
equilibrium constants for substrate inversions and/or racemiza-
tions in the absence of any other reactants. Then, in separate
kinetic experiments, the reactivity of the starting equilibrated
substrate mixture was investigated. Specifically, final product
ratios and the global rate constant for the appearance of all
products originating from both substrates were determined. Both
the Winstein-Holness equation and the Curtin-Hammett
approximation were then used to determine the key rate constant
ratio,k3/k4. The justification for using both of these approxima-
tions was usually made by performing independent molecular
mechanics or other theoretical calculations to estimate energy
barriers for product forming and substrate equilibration steps.
The net result is that not all of the evidence is provided entirely
by experiment. The missing link in these approaches is that
experimental determination of any one of the “cross” ratiosk1/
k3, k1/k4, k2/k3, or k2/k4 needed to validate the approximations
was not made.

The connection between traditional conformational studies
and the present interest in kinetic and dynamic kinetic resolution
has recently been vigorously investigated.3 Most notably,
Kagan,9 Noyori,10 Blackmond,11 and Singleton12 have indepen-
dently investigated nonlinear effects in kinetic resolutions using
enantioimpure catalysts. It is important to note that these
treatments describe kinetic models that differ fundamentally
from those of Scheme 1. The reactions studied by these workers
involve achiral substrates reacting with enantioimpure mixtures
of nonracemizable chiral catalysts. An example reaction first
analyzed by Noyori is the asymmetric alkylation of aromatic
aldehydes with dialkylzincs using amino-alcohol catalysts to
achieve chiral amplification. Unlike Scheme 1, there is no
dynamic component in the substrate, and no racemization of
any one catalyst of a given stereochemistry to another occurs.
Chiral products arise directly from the reaction of the substrate
with any one of the chiral catalysts present in the reaction
mixture that exist in monomeric and dimeric forms.

Kinetic models involving stereochemical substrates discussed
in this paper describe reactions of racemizable chiral substrates
with achiral catalysts (reagents) or with enantiopure chiral
catalysts (reagents) under pseudo first-order conditions. The
most notable work relevant to the present investigation is that
of Noyori, who introduced a mathematical description of

dynamic kinetic resolution on the basis of Scheme 1 by
simulating the variation of enantioselectivity with percent
reaction conversion under Curtin-Hammett conditions.13a,b

Theoretically determined template curves were first generated
from a series of rate constant ratios, and these were then used
to estimate enantioselectivities at 0 and 100% reaction comple-
tion by overlaying them on experimental data recorded at various
reaction times. Rate constant ratios were adjusted accordingly
until a good visual fit was obtained. It was demonstrated that
for slow enough reactions time-dependent enantioselectivities
could be determined by periodically sampling reaction mixtures
and analyzing their product distribution by chromatographic
methods. In this way, it was possible to verify that the Curtin-
Hammett condition was valid for the hydrogenation ofâ-ke-
toesters in the presence of BINAP-Ru(II) catalysts. Other
workers14 also used similar strategies to quantify enantioselec-
tivity. To date, however, reported experimental plots based on
percent conversion suffer from too few data points to be
accurately fitted to the complicated sigmoidlike Noyori func-
tions. Moreover, these curves do not always approach minima
or maxima at 0 or 100% reaction completion depending on the
magnitudes of the rate constant ratios. A key feature of Noyori’s
analysis is that estimates of these ratios were determined from
product studies based on reactions carried out at asingleinitial
substrate condition, commonly, racemic mixtures. It will be
shown in this investigation that direct and reliable estimates of
rate constant ratios can be made if product study data are
collected from asetof initial conditions covering the full range
of possible optical purities of starting materials.

This work first presents a complete and accessible analytical
treatment of Scheme 1 and related schemes using the Laplace
transform or operator method.15 Pharmacokineticists in the study
of drug metabolism in mammalian bodies have extensively used
the Laplace transform method, largely unknown among practic-
ing organic chemists. A detailed description of this method has
recently appeared for the determination of analytical solutions
to well-known unimolecular kinetic schemes.15c What is pre-
sented in this work is an a priori determination of key rate
constant ratios without invoking any approximations on the
analytical solution. Simple expressions for product ratios and
product excesses are determined both at initial and final reaction
times. Simulations show that enantioselectivities at 0 and 100%
reaction are more reliably determined by extrapolating plots of
product excess versus time rather than versus percent reaction
completion. Linear relationships for the dependence of the initial
product ratio on the initial substrate ratio and for the dependence
of the final product excess on the initial substrate excess suggest
new manipulations of product study data. A graphical repre-
sentation of these relationships allows for the first time the
experimental determination of all rate constant ratios and the
extent of dynamic kinetic resolution under any set of conditions;
that is, the analysis is applicable whether the Curtin-Hammett
principle holds for a given chemical system. The graphical
treatment is universal and is applicable to any complex kinetic
scheme that has at its core the elements of Scheme 1. A
graphical simulation study also shows how a given reaction can
be optimized once its relative energy barriers are fully charac-
terized. These results also demonstrate the precise mathematical
conditions of the Curtin-Hammett principle.

Kinetic Analyses of Fundamental and Extended Schemes

The time-dependent concentration profiles for substrates and
products in Scheme 1 under the initial conditions [X]0 ) a and
[Y] 0 ) b are given by eqs 1a-d
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whereγ1 + γ2 ) k1 + k2 + k3 + k4 andγ1γ2 ) k1k4 + k2k3 +
k3k4. This solution is strictly valid under first-order or pseudo-
first-order conditions. A complete solution using the Laplace
transform method is given in the Supporting Information. The
symmetry of the forms of eqs 1a and b and of the forms of eqs
1c and d is evident. This property occurs in the forms of the
inverse Laplace transforms from which the time-dependent
functions are derived. The expression for [Y] can be immediately
written down once that of [X] is known by making the following
variable and subscript interchanges in each term:a replacesb,
1 replaces 2, and 3 replaces 4. Precisely the same observation
is made when comparing expressions for [PX] and [PY]. This
kind of symmetry between pairs of concentration variables is
an underlying pattern that holds for any kinetic scheme that
has symmetric elementary steps. Hence, the task of obtaining
expressions for the concentration-time profiles is facilitated
since only half of them need to be worked out by the Laplace
transform method. This technique is exploited in the determi-
nation of analytical solutions of more complex extended kinetic
schemes based on Scheme 1 (see Schemes 3-9 and 11-13 in
Table 1). The Supporting Information presents the sets of inverse
Laplace transforms for all extended schemes discussed in this
work. Since Scheme 10 is asymmetric in the pattern of
elementary steps connecting the four chemical species, the time
-dependent functions need to be determined separately. For the
purposes of obtaining initial and final product ratios and product
excesses, it is unnecessary to evaluate coefficientsγ1 and γ2

further since these appear in the denominators of terms and
cancel out when ratios are evaluated. Final product ratios are
easily determined since all exponential terms drop out, leaving
behind only constant terms whereas initial product ratios are
determined using L’Hoˆpital’s rule16 since evaluation by direct
substitution leads to indeterminate forms (see Table S2). The

advantages of casting analytical solutions in the present forms
may be appreciated when they are compared with previous
expressions.6,7 Furthermore, it can be shown that the Winstein-
Holness equation17 is obtainable from eqs 1a-d whenγ1 ) γ2.
(See Appendix.)

Chemical Relevance of Kinetic Schemes

The traditional kinetic mechanisms shown in Schemes 1 and
2 have been extensively used to describe Curtin-Hammett
phenomena and are well known. Schemes 3, 4, and 5 describe
situations involving equilibration between products. These
represent worst-case scenarios from the point of dynamic kinetic
resolution, as the final product ratios are solely dependent on
these equilibria. Literature examples of successful dynamic
kinetic resolution often involve the racemization of carbonyl
substrates. A representative example is the preparation of
R-aminoesters fromR-haloesters in the presence of amines.3d

Mechanistically, such a chemical process necessarily proceeds
via enolic intermediates. Though experimental examples of
dynamic kinetic resolution have been sufficiently described
using Scheme 1, in fact the phenomenon is more adequately
described by Scheme 6. The introduction of intermediate A in
Scheme 6 between substrates X and Y accounts for this. The
corresponding analytical solution resembles that given in eqs
1a-d (see Supporting Information) and is consistent with
experimental observations. Scheme 7 is a variant of Scheme 6
that combines direct and indirect connections between the
substrates X and Y. Scheme 8 is a fuller representation of the
transformations described by Noyori in his investigation of the
hydrogenation of racemic mixtures of chiral esters. Since
hydrogenation can take place via the re and si faces of theâ-keto
group, two possible products arise from each starting diastere-
omer. Hence, each of these transformations is associated with
a different transition state and is thus treated as a separate
elementary step. Schemes 9, 10, and 11 are examples of
“crossover” product-forming schemes. Schemes 9 and 10
represent symmetric and asymmetric versions, respectively, of
direct product-forming steps. Scheme 11 represents a hypotheti-
cal case involving combined direct product-forming steps and
indirect product-forming steps passing through common inter-
mediate I. Scheme 9 has been implicated in the hydride reduc-
tion of substituted cyclohexanones,18 the chlorodecarboxylation
of cyclohexane- and cyclohexenecarboxylic acid derivatives,19

the isomerization of imines,20 and the transamination of imine
derivatives.21 The final two schemes, 12 and 13, are double
“feed-in” mechanisms considered previously by Seeman in his
analytical investigations7b but are now investigated by the new
approaches presented in this work.

Determination of Key Parameters

Once product ratio time profiles are determined, product
excess time profiles can be immediately deduced from the
simple relationship

where pe(t) can represent enantiomeric or diastereomeric excess
depending on the stereoisomeric relationship of the products.
(See Scheme 2 for the case of racemizable enantiomeric
substrate.)

[X] ) {a(k2 + k4 - γ1) + bk2

γ2 - γ1
}e-γ1t -

{a(k2 + k4 - γ2) + bk2

γ2 - γ1
}e-γ2t

[Y] ) {b(k1 + k3 - γ1) + ak1

γ2 - γ1
}e-γ1t -

{b(k1 + k3 - γ2) + ak1

γ2 - γ1
}e-γ2t

[PX] )
bk2k3 + ak3(k2 + k4)

γ1γ2
-

{bk2k3 + ak3(k2 + k4 - γ1)

γ1(γ2 - γ1) }e-γ1t +

{bk2k3 + ak3(k2 + k4 - γ2)

γ2(γ2 - γ1) }e-γ2t

[PY] )
ak1k4 + bk4(k1 + k3)

γ1γ2
-

{ak1k4 + bk4(k1 + k3 - γ1)

γ1(γ2 - γ1) }e-γ1t +

{ak1k4 + bk4(k1 + k3 - γ2)

γ2(γ2 - γ1) }e-γ2t (1a-d)

pe(t) )

[PX]

[PY]
- 1

[PX]

[PY]
+ 1

(2)

2376 J. Phys. Chem. A, Vol. 107, No. 13, 2003 Andraos



Figures 1A and B and 2A and B show simulations of the
behavior of enantiomeric excesses with time as the magnitudes
of the rate constant ratios are varied according to Scheme 2 for
the case of reactions of racemic substrate mixtures. These curves

were generated using eqs 1c and d and 2 with the conditiona
) b ) 1.22 Experimentally generated curves can be obtained
from quantitative product studies by monitoring the appearance
of products with time. For direct comparison, rate constant ratios
were chosen to match those used by Noyori in constructing his
sigmoidal template curves using percent reaction completion
as the independent variable. For example, Figure 1A corresponds
directly to Figure 1e in ref 13a using identical sets of parameters.
The shapes of the curves obtained here resemble exponential
decays and approach minima as reactions approach 100%
completion. The initial and final enantiomeric excesses may be
easily determined either by extrapolation or by a nonlinear least-
squares analysis of kinetic data according to the complete time-
dependent function given in eq 2. It will be shown vide infra
that these two experimentally determined quantities along with

TABLE 1: Summary of Extended Kinetic Models Based on Scheme 1

scheme
number kinetic model

scheme
number kinetic model

3 8

4 9

5 10

6 11

7 12

13

SCHEME 2
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the initial substrate ratio,a/b, are sufficient to determine relative
energy barriers precisely and unambiguously for a chemical
system obeying Scheme 1 or 2.

The entries in Table 2 summarize expressions pertaining to
Scheme 1 for the product ratio and product excess at initial
and final reaction times. These may be compared with the
corresponding results given in Table S3 for other related
schemes in Table 1. From Table S3, one can recognize a number
of important patterns. In all cases except for Scheme 9, the initial
product ratio is a linear function of the initial substrate ratio,
a/b:

Although product concentrations are themselves zero at initial
time, the corresponding product ratios are finite. The slope
parameter in eq 3 is immediately related to the rate constant
ratio k3/k4. All previous conformational studies on chemical
systems obeying Scheme 1 have the common feature of
estimating this target rate constant ratio from thefinal product
ratio and the equilibrium constant for the interconverting
conformers. Note that ([PX]0/[PY]0) ) (a/b)(k3/k4) is identical
to the Curtin-Hammett expression (vide infra) for the final
product ratio whenK ) (b/a). Equation 3 is a key relationship
since it shows howk3/k4 can be determined directly without
having to invoke either the Winstein-Holness equation or the
Curtin-Hammett condition. Previous analytical solutions6,7

presented in the literature did not include expressions for the

initial product ratio but rather were focused on obtaining
approximate expressions for the final product ratio.

From Table S3, the majority of expressions for the final
product ratio take the form

whereφ is some function of the initial substrate concentrations
and all of the associated rate constants. Exceptions to this are
mechanisms that have an equilibration step between products
(see Schemes 4 and 5) and those that involve crossover product-
forming steps from both starting materials. (See Schemes 9,
10, and 11.) It is interesting that in comparing Schemes 12 and
13 the final product ratio is independent of the rate constants
kX and kY in the latter case, where X and Y originate from
different precursors. However, in the former case, it is dependent
on these feed-in rate constants when X and Y originate from a
common precursor.

Equation 4 is significant as it provides a precise mathematical
condition for the Curtin-Hammett limit. The final product ratio
is dependent only on the energy barriers of elementary steps
leading to the products and not on any prior equilibrium between
substrates if and only ifφ ) 1. Normally, the Curtin-Hammett
condition is represented by the two inequalities (i)k1, k2 . k3,
k4 and (ii) k1 ≈ k2. The φ ) 1 condition is an equivalent but
more compact statement of the principle. It should be mentioned

Figure 1. (a) Time dependence of the enantiomeric excess with respect
to the PR product starting from a racemic mixture of substrates (Scheme
2). Simulated curves were constructed using eqs 1c and d and 2 with
a ) b ) 1; k4 ) 1; k3/k4 ) 95:5; k1/k3 ) k2/k3 ) s; γ1 + γ2 ) k1 +
k2 + k3 + k4 ) 20 + 38s; andγ1γ2 ) k1 k4 + k2 k3 + k3 k4 ) 19 +
380s: (a) s ) 1, (b) s ) 0.2, (c)s ) 0.06, (d)s ) 0.03, and (e)s )
0.01. (b) Time dependence of the enantiomeric excess with respect to
the PR product starting from a racemic mixture of substrates (Scheme
2). Simulated curves were constructed using eqs 1c and d and 2 with
a ) b ) 1; k4 ) 1; k3/k4 ) 95:5; k1/k3 ) k2/k3 ) s; γ1 + γ2 ) k1 +
k2 + k3 + k4 ) 20 + 38s; andγ1γ2 ) k1 k4 + k2 k3 + k3 k4 ) 19 +
380s: (a) s ) 1, (b) s ) 3, (c) s ) 6, (d) s ) 20, and (e)s ) 100.

[PX]0

[PY]0

) intercept+ slope(ab) (3)

Figure 2. (A) Time dependence of the enantiomeric excess with respect
to the PS product starting from a racemic mixture of substrates (Scheme
2). Simulated curves were constructed using eqs 1c and d and 2 with
a ) b ) 1; k4 ) 1; k3/k4 ) 5:95; k1/k3 ) k2/k3 ) s; γ1 + γ2 ) k1 +
k2 + k3 + k4 ) (20 + 2s)/19; andγ1γ2 ) k1 k4 + k2 k3 + k3 k4 ) (1
+ 20s)/(192): (a) s ) 1, (b)s ) 0.2, (c)s ) 0.06, (d)s ) 0.03, and (e)
s) 0.01. (B) Time dependence of the enantiomeric excess with respect
to the PS product starting from a racemic mixture of substrates (Scheme
2). Simulated curves were constructed using eqs 1c and d and 2 with
a ) b ) 1; k4 ) 1; k3/k4 ) 5:95; k1/k3 ) k2/k3 ) s; γ1 + γ2 ) k1 +
k2 + k3 + k4 ) (20 + 2s)/19; andγ1γ2 ) k1 k4 + k2 k3 + k3 k4 ) (1
+ 20s)/(192): (a) s ) 1, (b) s ) 3, (c) s ) 6, (d) s ) 20, and (e)s )
100.

[PX]∞

[PY]∞
) φ(k3

k4
) (4)
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that both inequality conditions must apply so thatφ ) 1 and
hence ([PX]∞/[PY]∞) ) k3/k4.

One can easily verify this by applying inequalities (i) and
(ii) to the complete expression forφ pertaining to Scheme 1.
Applying the first inequality alone results in a dependence of
the final product ratio on the equilibrium between substrates:
([PX]∞/[PY]∞) ) (k3/k4)(k2/k1) ) (k3/k4K). This observation was
noted by Seeman7 and resulted in a revision of the definition
of this principle in IUPAC glossaries.23 In addition, the Zefirov
expression6 for the final product ratio when substrates are
initially at equilibrium is verifiable at once from eq 4 whenb/a
is replaced byk1/k2 in the expression forφ in Table 2. Table
S4 gives a complete summary of the resulting expressions for
the final product ratios and excesses for more complicated
schemes when the Curtin-Hammett condition is applied. For
([PX]∞/[PY]∞) ) k3/k4 to be true throughout, the standard
inequality conditions need to be extended. For example, in
Scheme 6,φ ) 1 is true if (i) kX, k-X, kY, k-Y . k3, k4 and (ii)
kX ≈ k-X andkY ≈ k-Y. Similar extended inequalities may be
deduced for schemes given in Table 1. The forms of the limiting
expressions in Tables 2 and S4 are reminiscent of Singleton’s
recent differential kinetic enantiomeric enhancement (DKEE)
parameter.12

Equation 4 also suggests a simple experiment to test the
validity of the Curtin-Hammett condition for a particular
chemical system. If a reaction obeying Scheme 1 is carried out
at various temperatures with a fixed initial substrate ratio, then
the dependence of the final product ratio on temperature can
be determined. An Arrhenius or Eyring treatment of the data
results in linear Arrhenius or Eyring plots if the Curtin-
Hammett condition holds and nonlinear behavior if it does not.
Nonlinearity occurs ifφ in eq 4 is not equal to unity. The
observation of nonlinearity requires care because such plots are
rather robust to changes in curvature, so it is necessary to
conduct experiments over as wide a temperature range as
possible to observe any real nonlinear effects. A clear example
of nonlinear behavior, however, has recently been reported for

the reaction of triazolinediones with olefins in methanol solution
involving biradical and zwitterionic intermediates.24 This reac-
tion obeyed a mechanism that is a one-sided feed-in variant of
Scheme 12.

Of particular note in Table S3 is a second general linear
relationship found between the final product excess and the
initial substrate excess, (a - b)/(a + b):

The intercept and slope parameters are given by combinations
of rate constant ratios of varying complexity, and-1 e (a -
b)/(a + b) e 1. Mechanisms involving an equilibration step
between final products result in final product excesses that are
independent of (a - b)/(a + b). (See Schemes 3, 4, and 5.)
Equation 5 is significant because it suggests for the first time,
as will be shown in the following section, how all rate constant
ratios can be determined entirely by experiment. In particular,
two of the rate constant ratios that come out of this analysis are
“cross” rate constant ratios since they connect one of the
product-forming steps with either the forward or reverse steps
in the equilibrium reaction. The determination of rate constant
ratios immediately translates into the complete energy charac-
terization of a chemical system. Moreover, the extent of dynamic
kinetic resolution efficiency can also be experimentally deter-
mined from these rate constant ratio parameters. In previous
analyses, the strategy employed whenever dynamic kinetic
resolution was observed for a chemical system was to justify
the validity of the Curtin-Hammett condition by carrying out
separate molecular mechanics, semiempirical, or ab initio
calculations to determine relative energy barriers for product-
forming steps and substrate equilibration steps. A notable
example of this strategy is the recent work by Durst.3d The
present conclusions demonstrate that this approach can be
circumvented.

TABLE 2: Summary of Initial and Final Product Ratios and Product Excesses for Scheme 1

initial
product ratio

[PX]0

[PY]0

final
product ratio

[PX]∞

[PY]∞

initial product
excess with

final product
excess with

condition respect to PX, peo respect to PX, pe∞

exact (a
b)(k3

k4
) φ(k3

k4
), φ )

(a + b)k2 + ak4

(a + b)k1 + bk3
(a
b)(k3

k4
) - 1

(a
b)(k3

k4
) + 1

φ(k3

k4
) - 1

φ(k3

k4
) + 1

) 1
rV + u + 1 (a - b

a + b) + rV - u
rV + u + 1

slope) 1
rV + u + 1

intercept) rV - u
rV + u + 1

Curtin-Hammett k3

k4
, φ ) 1

k3

k4
- 1

k3

k4
+ 1

) r -1
r + 1

slope) 0

intercept) r - 1
r + 1

anti-Curtin-Hammett a
b
, φ ) a

br
a
b

- 1

a
b

+ 1
) a - b

a + b

slope) 1
intercept) 0

pe∞ ) intercept+ slope(a - b
a + b) (5)
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Characterization of Energetics and Graphical Analysis

Applying eq 5 to Scheme 1 or 2 results in a slope and
intercept of 1/(rV + u + 1) and (rV - u)/(rV + u + 1),
respectively, wherer ) k3/k4, u ) k1/k3, and V ) k2/k3. The
slope is always positive sincer, u, andV are positive quantities.
The most common starting substrate conditions encountered in
the synthesis of optically pure products are a racemic mixture
(a ) b), pure X or SR (b ) 0), or pure Y or SS (a ) 0). The
linear relationships given by eqs 3 and 5 suggest that product
study experiments should be done under a common set of
reaction conditions of temperature, pressure, catalyst species,
and catalyst concentration for arange of initial substrate
conditions beyond the above three cases. In this way, the rate
constant ratior may be obtained from the slope of [PX]0/[PY]0

versusa/b, whereas the rate constant ratiosu and V may be
determined from the slope and intercept parameters determined
from eq 5 according to

Equations 6a and b readily yield the equilibrium constantK: K
) k1/k2 ) u/V. Similar strategies can be used to obtain the rate
constant ratiosr, u, andV for Schemes 6, 7, 12, and 13;r, k3*/
k4*, k3/k3*, w, u, andV for Scheme 8;r, u, V, ka/k4, andkb/k4 for
Scheme 9; andr, r′, u, and V for Scheme 10. In the case of
Scheme 8, which is relevant to the chemical examples of Noyori,
the linear property between the final product excess and the
initial substrate excess exists when all products arising from
one starting stereoisomer are compared with all products arising
from the other. Hence, for Scheme 8, pe∞ in eq 5 is defined as
pe∞ ) {([PX] + [PX*]) - ([PY] + [PY*]) }/{([PX] + [PX*])
+ ([PY] + [PY*]) }. Individual pairwise product excesses such
as ([PY] - [PY*])/([PY] + [PY*]) are not linear in the initial
substrate excess (a - b)/(a + b).

The results for Scheme 9 are significant since Seeman notes25

that the application of the Winstein-Holness treatment cannot
yield unique solutions of rate constants for this Scheme. In the
present treatment,r, ka/k4, andkb/k4 are obtained directly from
a plot of the initial product ratio againsta/b. The remaining
two ratiosu andV are obtained from a straightforward algebraic
treatment of the slope and intercept of a plot of the final product
excess against (a - b)/(a + b) once the previous three ratios
are known. In the case of Scheme 11, however, it is impossible
to implement this strategy unless separate kinetic experiments
are performed to determine at least two absolute rate con-
stants.

Parts A and B of Figure 3 show example energy reaction
progress diagrams for the case of enantiomeric substrates (see
Scheme 2) reacting to produce diastereomeric products in the
presence of chiral reagents under anti-Curtin-Hammett and
Curtin-Hammett conditions, respectively. The correspondences
between energy differences and rate constant ratios defined in
this investigation are shown. From the slope and intercept
parameters of eq 5, one may apply two limiting conditions
corresponding to the Curtin-Hammett limit and the anti-
Curtin-Hammett limit, respectively. In terms ofr, u, and V,
these conditions becomeu ) V f ∞ and u ) V f 0,
respectively. It is straightforward to show that these limiting
situations correspond directly to the case when the barrier for
the equilibration step is far smaller than those for the product-

forming steps for the Curtin-Hammett limit and vice versa for
the anti-Curtin-Hammett limit. In the Curtin-Hammett limit,
the slope of eq 5 tends to zero, and the intercept tends to (r -
1)/(r + 1), whereas in the anti-Curtin-Hammett limit the slope
tends to unity and the intercept tends to zero. Table S4
summarizes the results of imposing these two limiting conditions
on all schemes given in Table 1. It is observed that the patterns
described hold up for several variants of Scheme 1.

Figure 4A shows the result of a plot of the final product
excess, pe∞, versus the initial substrate excess, (a - b)/(a + b),
according to eq 5 with fixedr (with r > 1) and varyingu ) V
for the case of enantiomeric substrates. Absolute values have
not been used in the definitions of excesses so that continuous
straight lines can be drawn. The connection between Noyori’s
previous analysis and this plot is that Noyori’s product study
data correspond to a single point determination, namely, the
product excess obtained for an initial racemic substrate mixture
((a - b)/(a + b) ) 0). The limiting Curtin-Hammett condition
given by the horizontal line indicates that the final product ratio
will always tend to the same value regardless of the substrate
ratio composition. This corresponds to the most efficient
dynamic kinetic resolution possible. The horizontal line is near
the top of the plot toward the vertex labeled PX. This is
consistent with the fact thatr > 1 (or k3 > k4), making product
PX the major product of the reaction. However, the anti-Curtin-
Hammett condition given by the diagonal line of unit slope and
zero intercept indicates that the final product ratio exactly
matches the initial substrate ratio. This corresponds to kinetic
resolution with no dynamic component. Such anti-Curtin-
Hammett behavior has been observed for the reduction of
sterically hinderedâ-diketones.26

Figure 3. (A) Energy-reaction progress diagram showing cor-
respondence between rate constant ratios and their respective energy
differences for the anti-Curtin-Hammett case. This diagram is specific
to the case of enantiomeric substrates X and Y leading to diaster-
eomeric products PX and PY via chiral reagents. (B) Energy-reaction
progress diagram showing correspondence between rate constant
ratios and their respective energy differences for the Curtin-Hammett
case. This diagram is specific to the case of enantiomeric substrates
X and Y leading to diastereomeric products PX and PY via chiral
reagents.

u ) 1
2[1 - intercept

slope
- 1]

V ) 1
2r [1 + intercept

slope
- 1]

(6a, b)
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Optimization of Dynamic Kinetic Resolution

The Curtin-Hammett principle and dynamic kinetic resolu-
tion are intimately connected, as one implies the other. The more
efficiently dynamic kinetic resolution is achieved in a chemical
system, the more it is true that the Curtin-Hammett condition
is valid. The variation of the slope in eq 5 between zero and
unity suggests that a dynamic kinetic resolution efficiency factor
may be defined between these two extremes. A slope of zero
corresponds to 100% efficient dynamic kinetic resolution, and
a slope of unity corresponds to 0% efficiency. In terms of the
rate constant parametersr, u, and V, the dynamic kinetic
resolution efficiency parameter for Schemes 1 and 2 is then
given by

where 0e εDKR e 1. Table 3 summarizes the expressions for
this parameter pertaining to all schemes given in Table 1. Note
that for Schemes 3, 4, and 5 the parameterεDKR is not applicable
since the final product excess is independent of the initial
substrate excess. From the variation exhibited in Figure 4A, it
is observed that all lines intersect at the point ((r - 1)/(r + 1),
(r - 1)/(r + 1)). The intersection corresponds to the initial
substrate ratio required to effect a final product ratio that would
result under the condition of 100% dynamic kinetic resolution.
Table 3 also includes expressions for these optimum initialF

ig
ur

e
4.

(A
)

S
im

ul
at

io
n

of
fin

al
pr

od
uc

t
ex

ce
ss

w
ith

re
sp

ec
t

to
P

X
as

a
fu

nc
tio

n
of

in
iti

al
su

bs
tr

at
e

ex
ce

ss
w

ith
re

sp
ec

t
to

X
at

fix
ed

r
)

10
:

no
ic

on
(u

)
V

)
10

0)
;O

(u
)

V
)

10
);

)
(u

)
V

)
2)

;×
(u

)
V

)
1)

;+
(u

)
V

)
0.

5)
;4

(u
)

V
)

0.
1)

;b
(u

)
V

)
0.

01
).

(B
)

S
im

ul
at

io
n

of
fin

al
pr

od
uc

t
ex

ce
ss

w
ith

re
sp

ec
t

to
P

X
as

a
fu

nc
tio

n
of

in
iti

al
su

bs
tr

at
e

ex
ce

ss
w

ith
re

sp
ec

t
to

X
at

fix
ed

r
)

1.
0:

no
ic

on
(u

)
V

)
10

0)
;O

(u
)

V
)

10
);

)
(u

)
V

)
2)

;×
(u

)
V

)
1)

;+
(u

)
V

)
0.

5)
;4

(u
)

V
)

0.
1)

;b
(u

)
V

)
0.

01
).

(C
)

S
im

ul
at

io
n

of
fin

al
pr

od
uc

t
ex

ce
ss

w
ith

re
sp

ec
t

to
P

X
as

a
fu

nc
tio

n
of

in
iti

al
su

bs
tr

at
e

ex
ce

ss
w

ith
re

sp
ec

t
to

X
at

fix
edr
)

0.
1:

no
ic

on
(u

)
V

)
10

0)
;O

(u
)

V
)

10
);

)
(u

)
V

)
2)

;×
(u

)
V

)
1)

;+
(u

)
V

)
0.

5)
;4

(u
)

V
)

0.
1)

;b
(u

)
V

)
0.

01
).

TABLE 3: Summary of Dynamic Kinetic Resolution
Efficiency Factors for Various Kinetic Modelsa

scheme
number

dynamic kinetic
resolution efficiency

factor,εDKR

optimum initial
substrate excess with
respect to X, seo* b

1 rV + u
rV + u + 1

r - 1
r + 1

3 not applicable not applicable
4 not applicable not applicable
5 not applicable not applicable
6 rV + u

rV + u + 1
r - 1
r + 1

7 rV + u
rV + u + 1

r - 1
r + 1

8 wu + V
wu + V + w

1 - w
1 + w

9
1 -

A2

B2

ka - kb

k4
+ r - 1

ka + kb

k4
+ r + 1

10 u(r + r′) + Vrr ′
(1 + u)(r + r′) + Vrr ′

r′(r - 1) - r

r′(r + 1) + r
11

1 -
C2

D2

ka - kb

k4
+ r - 1

ka + kb

k4
+ r + 1

12c rV + u
rV + u + 1

r - 1
r + 1

13 rV + u
rV + u + 1

r - 1
r + 1

a Variable definitions are given in Tables S3 and S4.b Corresponds
to a value of seo* yielding a pe∞ obtained under Curtin-Hammett

conditions.c For this case, pe∞ is plotted against
kX - kY

kX + kY
.

εDKR ) rV + u
rV + u + 1

(7)

Dynamic Kinetic Resolution J. Phys. Chem. A, Vol. 107, No. 13, 20032381



substrate ratios for each of the schemes given in Table 1. The
simulation depicted in Figure 4A with fixedr and varyingu )
V suggests how manipulating the prior substrate equilibrium can
optimize a reaction with fixed product-forming reactions. This
strategy corresponds exactly to the technique of dynamic
thermodynamic resolution described by Beak.4 The starting
substrate ratio is biased in favor of the product of interest by
shifting the equilibrium in the direction of the substrate that
leads to that product. This is commonly done by manipulating
the temperature of the equilibrium reactionbeforethe product-
forming reactions are carried out. Alternatively, the starting
materials, usually obtained as products from a previous step,
can be separated, remixed according to the optimum ratio, and
then allowed to react under conditions leading to the desired
products. This second option may be advantageous if the starting
materials are a diastereomeric pair rather than an enantiomeric
pair. In either case, selecting a target initial substrate excess
equal to (r - 1)/(r + 1) takes the guesswork out of choosing
an appropriate substrate condition to maximize the yield of the
desired product. Figure 4B and C shows similar simulations
under the conditions ofr ) 1 andr < 1, respectively. The case
of r ) 1 corresponds to equal energy barriers for the product-
forming reactions and an intersection of (0, 0) corresponds to
an initial racemic substrate mixture leading to a final optimal
racemic product mixture. The caser < 1 is analogous to that
shown in Figure 4A except that product PY is now favored,
hence the horizontal Curtin-Hammett line and intersection point
appear in the lower left quadrant of the graph.

The simulations shown in Figure 5A-C describe the opposite
variation shown in Figure 4A-C, namely, thatu ) V is fixed
and r is varied. This corresponds to the more common
optimization in which the product-forming reactions are ma-
nipulated. In Figure 5A withu ) V exceeding unity, all lines
are nearly horizontal so that the chemical system is predisposed
to being Curtin-Hammett-like. As expected, products PX and
PY are favored whenr > 1 (or k3 > k4) andr < 1 (or k3 < k4),
respectively. Asu ) V becomes substantially less than unity,
the chemical system shifts to being anti-Curtin-Hammett-like
with all lines tending to have a slope of unity and passing
through the origin. Product PX is favored if an initial substrate
excess is chosen in favor of X (upper right quadrant), whereas
product PY is favored if an initial substrate excess is chosen in
favor of Y (lower left quadrant).

The advantage of constructing experimental plots according
to eq 5 is that they show how far a reaction can be pushed in
the direction of 100% efficient dynamic kinetic resolution.
Hence, a third strategy applicable to all graphs shown is that
once the energetics of a reaction are determined reaction
conditions may be selected so as to make the experimentally
determined line more horizontal, that is, to make the chemical
system behave in a more Curtin-Hammett-like manner. Ex-
amples of achieving this, as demonstrated by Noyori’s results
shown in Table 4, include changing the solvent of the reaction,
adding appropriate catalysts, changing the type of catalyst used,
or changing the concentration of catalyst used.

An alternative approach to optimizingε is to vary the
temperature of the reaction. It is readily apparent that each of
the rate constant ratio parameters in eq 7 scales with temperature
in an Arrhenius fashion. It can be shown that the variation ofε

with T is sigmoidal where two cases arise depending on the
signs of the energy differences between product-forming steps
and either the forward or reverse step in the equilibrium. In the
first case, a sigmoidal graph with a maximum asymptote equal
to ε ) 1 atT ) 0 and a minimum asymptote equal toε ) C < F
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1 in the high-temperature limit applies whenE4 - E2 > 0 and
E3 - E1 > 0, or E4 - E2 > 0 andE3 - E1 < 0, or E4 - E2
< 0 andE3 - E1 > 0, whereC is a constant composed of
Arrhenius preexponential factors [(A2/A4) + (A1/A3)]/[(A2/A4)
+ (A1/A3) + 1]. In this case,decreasingtemperature maximizes
ε so thatC e ε e 1, whereε ) C represents a minimum value
for the efficiency parameter. In the second case, a sigmoidal
graph with a minimum asymptote equal toε ) 0 atT ) 0 and
a maximum asymptote equal toε ) C in the high-temperature
limit applies whenE4 - E2 < 0 andE3 - E1 < 0. In this
case,increasingtemperature maximizesε so that 0e ε e C,
where ε ) C is now a maximum value for the efficiency
parameter. This situation corresponds uniquely to the anti-
Curtin-Hammett condition in which optimization is affected
largely by entropic factors. Clearly, practical considerations
governing the solvent of the reaction and the solubilities of
reaction components will dictate whether such a strategy can
be implemented in a given chemical system.

Connections with Literature Examples

The literature shows that the number of quantitative studies
carried out to obtain reliable estimates of energy barriers in
Curtin-Hammett schemes lags far behind the number of
chemical examples found that conform to any one of the
schemes shown in Table 1. At present, the few examples
available that can be used to test ideas put forward in this work
are discussed below.

(I) Stereochemically Related Substrates.A reevaluation of
Durst’s results for the reaction of racemic mixtures of diaster-

eomericR-halopantolactones with benzylamine according to the
present treatment yields lower-limit estimates forr according
to Scheme 1. For example, his observed product ratio of ([PX]∞/
[PY]∞) ) 7 translates into the exact relation ([PX]∞/[PY]∞) )
(2Vr + 1)/(2u + 1). Since the substrates are diastereomeric,u
andV have different values. It is readily apparent that an infinite
number of combinations ofu andV are possible so that ([PX]∞/
[PY]∞) ) 7 or r ) (3 + 7u)/V. A graphical analysis of the latter
relation for positiveu and V indicates that it has a minimum
value of 7 whenu andV tend to infinity, that is, in the Curtin-
Hammett limit. This means that the energy difference between
steps 3 and 4 is at least 1.2 kcal/mol at 300 K in this example,
as noted by Durst.3d This estimate, however, does not give any
information as to how this energy barrier difference compares
with that for the racemization of substrates. Durst relied on
theoretical calculations of transition states for product-forming
steps and racemization steps to justify that the Curtin-Hammett
condition was applicable to the chemical system investigated.
The present investigation offers the possibility of obtaining all
three rate constant ratios so that the dynamic kinetic resolution
that is observed can be quantified and then improved upon.

Relationships for Scheme 8 given in Tables S4 and 3 and
Noyori’s rate constant ratio data determined by the method
described above (see Introduction) were used to reevaluate his
previous experimental data for the hydrogenation ofâ-ketoesters
using BINAP catalysts.13b The resulting efficiency factors using
eq 7 are summarized in Table 4. For comparison, Noyori’s
selectivity parameter, SEL, is included in the compilation. In
all cases,εDKR exceeded about 0.6 so that the dynamic kinetic

TABLE 4: Reevaluation of Noyori’s Parameters for the Hydrogenation of Various â-Ketoesters using BINAP-Ru(II) Catalysts
On the Basis of the Rate Constant Definitions Given in Scheme 8 in Table 1a

racemic
substrate,a ) b

key reaction
conditions

1
w

b

k1

k3 + k3′
)

k2

k3 + k3′
(u ) V)c |eep

∞| d
φ e

dynamic resolution
efficiency factor,f

εDKR

selectivity
parameter,g

SEL∞

CH2Cl2 9.8 0.45 0.68 0.53 0.83 0.82
a ) b ) 2.7 M
[(R)Binap- Ru(II)]
) 2.6 mM
CH3OH 5.9 0.24 0.44 0.44 0.62 0.57
a ) b ) 2.7 M
[(R)Binap- Ru(II)]
) 2.6 mM
CH2Cl2 0.067 92 0.87 1.08 0.99 0.93
a ) b ) 2.7 M
[(R)Binap- Ru(II)]
) 2.6 mM
CH2Cl2 0.038 94 0.92 1.13 0.99 0.96
a ) b ) 2.7 M
[(R)3,5- xylyBINAP - Ru(II)]
) 2.6 mM
CH3OH 13 0.88 0.79 0.67 0.93 0.89
a ) b ) 0.33 M
[(R)BINAP - Ru(II)]
) 0.18 mM
CH3OH 13 0.22 0.66 0.35 0.75 0.82
a ) b ) 0.33 M
[(R)BINAP - Ru(II)]
) 0.65 mM

a Data taken from reference 13b.b Corresponds to
kR

kS
in Noyori’s notation.c Corresponds to

kinv

kR
and k1 ) k2 ) kinv in Noyori’s notation.

d Evaluated according to|eep
∞| ) | V - wu

wu + V + w
| ) | u(1 - w)

u(1 + w) + w
| whereu ) V and eeso ) 0 since the initial substrate is racemic.e Evaluated

according toφ )
2u + w
2u + 1

whereu ) V anda ) b since the initial substrate is racemic.f Evaluated according toεDKR )
wu + V

wu + V + w
)

u(1 + w)

u(1 + w) + w

whereu ) V. g Noyori’s selectivity parameter defined as SEL∞ ) (1 +
k4

k3φ
+

k3*

k3
+

k4*

k3φ
)-1

) ( k3

k3 + k3*)( 2u + w
2[u(1 + w) + w]) in present notation.
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resolution was better than 60% efficient, thereby confirming
that the Curtin-Hammett condition was indeed operative. For
the pairwise comparisons shown, the trends inεDKR and SEL
parallel one another. This is satisfying since Noyori’s investiga-
tion is presently the best quantitative work available on dynamic
kinetic resolution. A reinvestigation of Noyori’s chemical
systems by the graphical method presented in this work may
offer firmer estimates of relative energy barriers.

Equation 7 can further be used to evaluate the efficiency of
the dynamic kinetic resolution of the 1,1-difluoro-2,3-dimeth-
ylcyclopropane system studied by Dolbier and Enoch.27 The
energetics of the pyrolytic extrusion of difluorocarbene leading
to cis- andtrans-1,2-dimethylethylene products was studied in
the gas phase. Using estimates of all four rate constants given
in their work at 297 K results in an efficiency of 98% for that
system. This is consistent with the observation that the major
product is the trans olefin, which in turn is formed from the
more abundanttrans-1,1-difluoro-2,3-dimethyl-cyclopropane at
equilibrium.

(II) Conformationally Related Substrates.The problem of
quantifying Curtin-Hammett efficiencies is more challenging
when dealing with reactions of conformationally related sub-
strates. Here, control over substrate ratios is not as facile as in
the case of stable stereoisomeric substrates. The usual strategy
is first to determine the equilibrium constant,K, and the final
product ratio,R∞, in separate experiments in the absence and
in the presence of reagents leading to products, respectively.
Then, a global first-order observed rate constant,kWH, is obtained
from the kinetic profile for the appearance of total product. The
ratio k3/k4 is then obtained using all three parameters through
the Winstein-Holness equation, assuming that the Curtin-
Hammett approximation is valid. An example chemical system
where this paradigm has been employed is theN-methylation
of pyrrolidines studied by Seeman25,28 in which estimates ofK
and R∞ were made by NMR measurements. The above
parameters are, however, insufficient to determine precisely the
efficiency parameter as defined by eq 7. First, only lower-limit
estimates of the equilibrium constant,K, are given. Second,
estimates ofr or k3/k4 hinge on the assumption that the
Winstein-Holness and Curtin-Hammett conditions apply to
the system (which is what is being tested). Third, estimates of
any one of the key cross rate constant ratiosk1/k3, k2/k3, k1/k4,
or k2/k4 are lacking. Last, the conductometric technique em-
ployed allowed only the appearance oftotal product to be
monitored kinetically. Hence, the time evolution of individual
products could not be determined by this method.

Despite these limitations, lower-limit estimates of the ef-
ficiencies of product resolutions can still be made for these
chemical systems. Since observed kinetics experiments are
usually conducted from equilibrium mixtures of substrates and
observed pseudo-first-order single-exponential kinetic curves are
recorded for the appearance of total product, it can be assumed
that the Winstein-Holness equation is valid (see Appendix).
To test the validity of the Curtin-Hammett approximation,
however, the exact relationship for the final product ratio under
these conditions must be used. Hence, we have according to
Scheme 1

for the final product ratio. If estimates of the initial product
ratios were made, then the exact relationR0 ) ([PX]0/[PY]0) )
ak3/bk4 can be used to obtain the following expressions fork3

andk4 from the Winstein-Holness equation:

kWH is the observed first-order rate constant for the appearance
of total product. Comparing these expressions with those derived
by Seeman shows that hereR0 replacesR∞, where R∞ is
approximated by the Curtin-Hammett relationR∞ ) (k3/k4K)
) R0. Substituting eqs 9a and b into eq 8 yields an expression
for k2:

Furthermore, sincek1 ) k2K,

Substituting all expressions fork1, k2, k3, andk4 into eq 7 finally
yields the Curtin-Hammett efficiency factor

If R∞ is replaced by its Curtin-Hammett approximation, which
is identical toR0, then ε ) 1, meaning that the resolution is
100% efficient as expected. A graphical analysis of eq 12 with
R0 as an independent variable shows that it has a hyperbolic
form with a discontinuity atR0 ) 1/K. There are two cases to
consider that satisfy the meaningful condition of 0e ε e 1,
namely,R0 < R∞ < 1/K andR0 > R∞ > 1/K. The former case
results in a concave-up curve between zero and 1/K with a
minimum efficiency equal to (1- R∞K)/(1 + R∞) at R0 ) 0,
whereas the latter case results in a concave-up curve in the
region whereR0 > 1/K with a minimum efficiency equal to
(R∞K - 1)/[K(1 + R∞)] asR0 f ∞. The strategy suggested by
eqs 8 to 12 to quantify precisely the dynamic kinetic resolution
or Curtin-Hammett efficiency for reactions of conformationally
related substrates is to determine experimentally theinitial
product ratio R0 in addition to the customaryR∞ and K
parameters.

Table 5 summarizes the results of the above analyses for
minimum estimates ofε using eq 12 on the pyrrolidine systems
given in refs 25 and 28c. In all cases, the inequalityR0 > R∞ >
1/K applies, thus making the Curtin-Hammett efficiency factor
lie in the range (R∞K - 1)/[K(1 + R∞)] e εDKR e 1. From this
analysis, it can be seen that 1-methyl-2-(2′-tert-butylphenyl)-
pyrrolidine exhibits the best Curtin-Hammett behavior with
an efficiency of at least 78%. This is consistent with the
observation that reaction takes place preferentially from the
conformer having the lone pair of electrons on nitrogen and
the N-methyl group in anti and syn relationships to the 2-aryl
group, respectively. This configuration is less sterically demand-
ing from the point of view of the incoming electrophile. This
means that the more thermodynamically stable conformer with
the opposite configuration must first change its orientation to
the above reactive form beforeN-methylation occurs.

The above analysis can also be used to determine lower-limit
estimates ofε for the benzylation ofN-alkyl piperidines29 and

R∞ )
[PX]∞

[PY]∞
)

k3[k2(1 + K) + k4]

Kk4 [k2(1 + K) + k3]
(8)

k3 )
kWH R0 (K + 1)

1 + R0

k4 )
kWH (K + 1)

K(1 + R0)
(9a, b)

k2 )
kWH R0 (1 - R∞ K)

K(1 + R0)(R∞ - R0)
(10)

k1 )
kWH R0 (1 - R∞ K)

(1 + R0)(R∞ - R0)
(11)

εDKR )
(1 - R∞ K)(1 + R0)

(1 - R∞ K)(1 + R0) + (K + 1)(R∞ - R0)
(12)
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the hydride reduction of sterically hindered 1,3-diketones.26

Tables 6 and 7 summarize the results of these analyses. The
higher Curtin-Hammett efficiency observed in acetone over
acetonitrile for the benzylation reaction supports the conclusion
of predominant equatorial attack in this solvent. In the case of
the hydride reduction reaction, estimated minimum efficiencies
near zero indicate anti-Curtin-Hammett behavior and are con-
sistent with product ratios paralleling substrate ratios at equi-
librium for those 1,3-diketones that are sterically congested.

In summary, the best way to obtain a priori experimental
values ofε for chemical systems obeying Scheme 1 where
substrates are interconverting conformers is to determineK, R∞,
andR0 directly. This involves carrying out experiments using
time-resolved techniques that allow both the total and individual

concentration-time profiles of products to be monitored from
initial equilibrium mixtures of substrates. Estimates of these
parameters can then be used directly in eq 12 to obtainε. This
strategy can also be used as a check on the graphical analysis
based on eqs 3 and 5 for chemical systems obeying Scheme 1,
where substrate ratios can be easily manipulated such as in the
case of stereoisomerically related substrates. In this case,ε is
obtained from the key rate constant ratiosr, u, andV using eq
7.

Conclusions

The analysis presented in this work has achieved a unifying
description of dynamic kinetic resolution. Several important
kinetic schemes have been solved analytically, and their product
concentration-time profiles have been determined. New linear
relationships are presented that allow for the first time an
experimental determination of relative energy barriers under any
set of reaction conditions beyond the Curtin-Hammett limit
by means of product studies. A new efficiency parameter has
been introduced that allows the dynamic kinetic resolution and
Curtin-Hammett efficiency to be quantified precisely. Graphical
simulations have been used to suggest strategies for optimizing
dynamic kinetic resolution in the syntheses of important
stereochemical products. The experimental determination ofR0

in addition toK andR∞ is shown to be a necessary parameter
for determining Curtin-Hammett efficiencies for reactions of
equilibrium mixtures of conformationally related substrates.
Practicing organic chemists need to concern themselves with
the linear relationships in eqs 3 and 5, the results given in Tables
2 and S3 for the initial and final product ratios, the graphical
treatments described to quantify and optimize dynamic kinetic
resolution, and eqs 7 and 12, which quantify the efficiency
parameterε.

TABLE 5: Reevaluation of Seeman’sN-Methylation Reactions of 1-Methyl-2-arylpyrrolidines with Methyliodide Obeying
Scheme 1a

1-methyl-2-arylpyrrolidines
final product

ratiob, R∞

equilibrium
constantc, K

minimum
estimates
of εDKR

d

1-methyl-2-phenylpyrrolidine 0.58 17 0.33
1-methyl-2-(2′-methylphenyl)-pyrrolidine 0.71 >30 0.40
1-methyl-2-(2′-ethylphenyl)-pyrrolidine 0.77 >30 0.42
1-methyl-2-(2′-isopropylphenyl)-pyrrolidine 0.77 >30 0.42
1-methyl-2-(2′-t-butylphenyl)-pyrrolidine 3.57 >40 0.78
1-methyl-2-(2′-pyridyl)pyrrolidine 0.50 15 0.29
1-methyl-2-(3′-pyridyl)pyrrolidine 0.67 15 0.36
1-methyl-2-(4′-pyridyl)pyrrolidine 0.91 15 0.44

a Data taken from refs 25 and 28.b Defined as the reciprocal of values given in refs 25 and 28 to conform to Scheme 1 defined in this work.
c Defined as the ratio of the anti conformer to the syn conformer with respect to theN-methyl and 2-aryl groups.d Calculated usingεmin ) (R∞K
- 1)/[(1 + R∞)K].

TABLE 6: Reevaluation of Katritzky’s Benzylation Reactions of 1-Alkyl-4-phenylpiperidines with para-Substituted Benzyl
Chlorides Obeying Scheme 1a

acetonitrile solvent acetone solvent

alkyl group
para

substituent
final product

ratiob, R∞

equilibrium
constantc, K

minimum
estimates
of εDKR

d
final product

ratiob, R∞

equilibrium
constantc, K

minimum
estimates
of εDKR

d

Me MeO 1.1 3.0 0.36 3.0 3.1 0.67
H 2.0 3.1 0.56 6.3 3.0 0.82
NO2 2.4 3.0 0.61 7.8 3.1 0.85

Et MeO 1.3 7.9 0.51 6.3 8.4 0.85
H 1.9 8.2 0.61 13.8 8.2 0.92
NO2 3.4 8.1 0.74 19.4 8.2 0.94

iPr MeO 1.5 19.2 0.58 16.5 19.1 0.94
H 2.2 19.1 0.67 36.1 18.7 0.97

a Data taken from ref 29.b Defined as the ratio of the equatorial benzylated product to the axial benzylated product.c Defined as the ratio of the
equatorial to axial piperidine conformers with respect to theN-alkyl group.d Calculated usingεmin ) (R∞K - 1)/[(1 + R∞)K].

TABLE 7: Reevaluation of Moreno-Mañas’ Hydride
Reduction Reactions of Sterically Hindered 1,3-Diketones
with Lithium Aluminum Hydride Obeying Scheme 1a

substituent patternb

R1 R2 R3

final product
ratioc, R∞

equilibrium
constantd, K R∞K

minimum
estimates
of εDKR

e

Me H 1-Ada 0.33 2.8 0.95 0.038
Me Me 1-Ada 0.053 3.3 0.17 0.79
Me H t-Bu 0.35 2.8 1.0 0f

Me H c-C6H11 0.31 7.6 2.33 0.13
t-Bu H 1-Ada 1.56 0.85 1.33 0.15

a Data taken from ref 26.b Structures of 1,3-diketones given in ref
26. c Defined as the ratio of diol product originating from the high dipole
moment diketo conformer to the diol product originating from the low
dipole moment diketo conformer.c Defined as the ratio of the low dipole
moment diketo conformer to the high dipole moment diketo conformer.
e Calculated usingεmin ) (1 - R∞K)/(1 + R∞) for entries 1 and 2, and
usingεmin ) (R∞K - 1)/[(1 + R∞)K] for entries 4 and 5.f Calculated
directly from eq 12 sinceR∞K ) 1.
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Appendix

Derivation of Winstein-Holness Equation from Equations
1c and d for Scheme 1.From eqs 1c and d, the time profile
for the total product concentration, [P], is given by

where

and

Similarly, from eqs 1a and b, the time profile for the total
substrate concentration, [S], is given by

where

and

In the general case, double-exponential behavior is expected
when monitoring the appearance of total product or the
disappearance of total substrate. In the fortuitous case whenγ1
) γ2 ) γ, preexponential factors in eqs A1 and A2 can be
summed to yield the corresponding simple first-order expres-
sions

and

Such relationships have been found to be adequate in describing
kinetic data for chemical systems discussed in refs 25-29.
Comparing the general forms ofC1 with C2 shows thatak3 +
bk4 ) C1(γ2 - γ1) + (a + b)γ2 ) (a + b)γ1 - C2(γ2 - γ1).
Whenγ1 ) γ2 ) γ, this reduces toak3 + bk4 ) (a + b)γ. If
the substrates are initially at equilibrium, thenK ) b/a and

which is the Winstein-Holness equation.17
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